Loading...
USDA Natural Resources Conservation Service Conservation Innocation Grant Copyright 2014 City of Dubuque Work Session - Bottom # 1. ITEM TITLE: USDA Natural Resources Conservation Service - Conservation Innovation Grant SUMMARY: City staff and partners will conduct a work session on the Conservation Innovation Grant through the U.S. Department of Agriculture Natural Resources Conservation Service. SUGGESTED DISPOSITION: ATTACHMENTS: Description Type City Manager Memo City Manager Memo Iowa League of Cities Presentation Supporting Documentation University of Iowa Presentation Supporting Documentation THE CITY OF DUUUCIUe had DUB E Masterpiece on the Mississippi 2007.2012.2013 TO: The Honorable Mayor and City Council Members FROM: Michael C. Van Milligen, City Manager SUBJECT: Work Session — October 10, 2016 USDA Iowa League of Cities Nutrient Trading Strategy Update DATE: October 6, 2016 In 2015, the City of Dubuque supported the Iowa League of Cities' Conservation Innovation Grant (CIG) application from the USDA Natural Resources Conservation Service. The League was successful in obtaining a $715,000 grant to to create a market-based nutrient offset or exchange system in the State of Iowa that has the ability to be replicated in the Mississippi River Basin and assist Iowa cities with the recent nutrient reduction strategy NPDES permit requirements. The League is the lead on the grant and along with partners from the University of Iowa Flood Center and Kieser and Associates, they will provide the City of Dubuque an update on grant activities including introduction of a project framework or registry that primarily addresses improvements developed within watersheds aimed at reducing nutrient loss. Our work within our watersheds has garnered national recognition and this project will continue our efforts in creating a more Sustainable Dubuque. ibt/11+-1) Mic ael C. Van Milligen MCVM:jh Attachment cc: Crenna Brumwell, City Attorney Cindy Steinhauser, Assistant City Manager Teri Goodmann, Assistant City Manager Iowa League of Cities Q USDA NR CS `�■ ° I! . nservation Innovation Grant October 10, 2016 - Dubuque Market Framework for Agricultural •�•� Water Quality Credit Trading in Iowa .... .. a" is' Dustin Miller dmiller@nyemaster.com t. (515 ) 883-0925 USDA NRCS Conservation Innovation Grants - Purpose : Competitive grants that stimulate the development and adoption of innovative approaches and technologies for conservation on agricultural lands . CIG uses Environmental Quality Incentives Program ( EQIP ) funds to award competitive grants . $ 20 Million Annual Funding Average , sem= Iowa Nutrient Reduction Strategy Overview Integrated Strategy Non - Point Source : Science Assessment Point Source : Technology Assessment 45 Percent Total Reduction Goal Estimated Cost NPS : Initial Investment Costs range from $ 1 . 2 to $4 billion PS : Capital and operation costs over 20 years of approximately $ 1 . 5 billion Steering Committee Water Quality Credit Trading Iowa League of Cities Environmental Coordination Committee Iowa League of Cities v. EPA ( 2013 ) SRF Sponsored Projects 2014 Conservation Innovation Grant with Iowa NRCS Office ($ 75,000 ) University of Iowa IIHR Kieser & Associates Troutman Sanders Alt 2015 Conservation Innovation Gran .Kik:.. ... 2015 Conservation Innovation Grant Title: Market Framework for Agricultural Water Quality Credit Trading in Iowa Award Amount: $715,000 award over 3 years from October 1, 2015 to September 30, 2018 • 1 to 1 Match •Iowa League of Cities: $85,160 Personnel •Storm Lake : Leveraging $372,420 from Urban/Rural Interface Watershed Project •Dubuque : Leveraging $257,420 from Catfish Creek Watershed Project Initial Partners •Dubuque •Storm Lake •Iowa Soybean Association •Iowa Agriculture Water Alliance •University of Iowa IIHR •Kieser & Associates •Troutman Sanders Technical Advisory Committee 4� 2015 Conservation Innovation Grant Technical Advisory Committee Municipal : Dubuque, Storm Lake, Iowa League of Cities, Cedar Rapids, Iowa Association of Municipal Utilities • Agricultural : Iowa Soybean Association, Soil & Water Conservation Districts, Iowa Corn grower's Association, Iowa Farm Bureau, Iowa Drainage District Association • Environmental : Iowa Environmental Council, Environmental Law and Policy Center, the Nature Conservancy, Iowa Natural Heritage Foundation Industry: Ecosystems Services Exchange, Iowa Association of Business & Industry, Alliant Energy, Stanley Consultants Academic: Iowa State University, University of Iowa Government: Iowa Department of Natural Resources, EPA Region 7 2015 Conservation Innovation Grant : Goals and Deliverables Creation of a voluntary Nutrient Reduction Exchange ( NRE ) Development of a DNR-approved WQCT framework Integration of SRF Sponsored Projects University- led modeling to best target implementation Stackable benefits (e . g . , Swampuster wetlands, flood mitigation and nutrient reductions) Ag commodity group participation 411, Expansion of flood modeling capabilities to include nutrients w _ The NRE / Trading Framework OW ^uuu-rv' those for Flooding s MS4s Drinking Water Registered Habitat SWCDs Offsets Accounting Certification Verification Registration Nutrient Reduction Tracking Transferability Exchange Certainty Efficiency Transparency Backstop to Small I N RS/off sets Community for Growth Participation 1 Regulatory Review WQCT for Trade Ratio (2:1 ) Compliance Important Next Steps • Demand & Supply Analysis Dubuque Storm Lake • Examine proposed watershed projects Nutrient reduction benefits Other benefits Cost-effectiveness of projects (' bang for the buck") Progress towards goals • Registered reductions/credits Questions ? Robert Palmer robertpalmer@iowaleague . org (515)244-7282 Dustin Miller f [� ' dmiller@nyemaster. com (515)883-0925 Mark Kieser mkieser@kieser-associates . com (269)344-7117 IIHR Nutrient Trading Update , , . .. r T {I 4-10k. � Lq m` Y'�' t,`; 'tws td �R, °vA . ,'& eaq� � ' titr - s • ...1.-; - - v l ' '4 iF*ms;, ', ' ' 4f , G4 , : � \ . _ , Y0.` ` .kf r^ Y 'A 1 ,41,ZkvF ` _ r `; { _ ,Y',-;.-.- s,a 'mss, ,F 4Y4, � , - - Larry Weber, Director, IIHR-Hydroscience & Engineering Antonio Arenas Amado, Assistant Research Scientist Chad Drake, PhD Candidate Monday, October 10, 2016 ---11—f Hydroscience&Engineering The overall goal of this research is to develop the scientific framework for a nutrient trading system in Iowa . • Specific objectives: 1. Develop a physically-based hydrologic and water quality watershed model of Catfish Creek to determine the coupled water quantity and quality benefits of agricultural conservation practices 2. Develop riverine and terrestrial (crop) nitrogen process models and couple to the physically-based hydrologic model to simulate nitrogen fate and transport 3. Use numerical simulations to evaluate the performance of individual conservation practices 4. Perform integrated watershed modeling in Catfish Creek to quantify the nitrogen load and flow reductions possible at the watershed scale under different practice scenarios The broader motivation for this research stems from the Gulf Hypoxia . Tiisa - Naa,V N .? rill; n •OklahomaCity 'II\\V KLAHO\IAemphis S, 0 150 300 o i *Little Rock km ARKANSAS a`‘ CI- ''' Dissolved Oxygen (mg/I) 5 Dallas MISSISSIFFI • -ckson 0 N LOUISIANA COASTAL p L A i Measuring Station Tall ah a;see •acksonv • Au;.tin • BatonRoug ° - New Orleans o ° o 0 0 Houston 0 San Antonio • • ''''9 "7:9: o 0 0 ° O^ 0 Orland( OA A 'A$o` o00 °0 '! o o • 0 o` <>.;?:, `FAv o 0`0 0° o °* b' r -.:: q° Oo 08 0 000 0 00° $off v0 oe og °o 1„. Tantpa 0 oZp tv o "0 000 0, .9 • t „:44,,,, ..0. 80® 0 6 °o ° o °0' °S o FLORIDA June/July 2016: `. t' 14,460 km2 onterrey Bre °kine (5,580 mit) M Gulf of Mexico N • ;+ • ti raits 0-! ' ilk Mexico <° La Habana 4111IC0.0 - . . rc.Ct - .'F C�NCet� __��� Gulf Hypoxia Task Force Goals : Load 2016-Preliminary I Annual NOx Load 5-Year Running Average 2016 data: Oct 2015 — May 2016 Baseline: 1980-1996 Average — - - - 20% Reduction Goal(2025) — — — - 45% Reduction Goal(2035) 1.5E406 — e C O v y 1E406 — — — E , o • P O _ z �a e c — — — I — 500000 — 0 1 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 Gulf Hypoxia Task Force Goals : Area I Hypoxic Area 25000 — 5-Year Running Average 1985-2015 Average — — — - 2035 Goal 20000 — E 15000 — 10 III R 1-11 N C- / I 0 M O 10000 — = 5000 — 111- 1- 11— — ' 0 I I I I 1- Ill 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 The Iowa Nutrient Reduction Strategy ( INRS) identifies specific nutrient reduction goals and offers nutrient trading as a water quality restoration technique . Table 1 from the INRS (2014) Practice Comments %Nitrate-N Reduction %Corn Yield Change Min Average Max Min Average Max Nitrogen Phosphorus (On (SW) Moving from Fall to Spring Pre-plant Load Load -80 6(25) 43 -16 4(16) 71 Application Spring pre-plant/sidedress 40-60 split Reduction Reduction 5(28) 33 2 10(7) 25 Timing Compared to Fall Applied Sidedress-Compared to Pre-plant _95 7(37) 45 -3 0(3) 5 0 0 Application Point Source 4% 15/0 Sidedress-Soil Test Based Compared 13 -29 4(20) 45 -12 70 to Pre-plant (22)•• °�' Liquid Swine Manure Compared to Non-Point 41% 29% E -9 4(11) 25 -17 0(13) 35 Spring-Applied Fertilizer c Source Poultry Manure Compared to Spring -32 -3(20) 21 -33 -2(14) 73 Source Applied Fertilizer u Reduce to Maximum Return to Nitrogen Nitrogen value 149 kg N/ha(133 lb Total 45% 45% E Appucabon N/ac)for CS and 213 kg N/ha(190 lb U lux [i u -1;; -1 Rate N/ac)for CC Nitrification Nitrapyrin in Fall-Compared to Fall- -33 9(19) 33 -4 6(22) 104 Inhibitcr Applied without Nitrapyrin Rye -10 31(29) 94 -28 -6(7) 5 Cover Crops Oat 26 28(2)••• 30 -6 -5(1) -4 Living Mulches e.g.Kura clover-Nitrate-N reduction 12 41(16) 53 -86 -9(32) 71 from one site Energy Crops-Compared to Spring- 26 72(23) 98 -100Y Perennial Applied Fertilizer w Land Retirement(CRP)-Compared to 67 85(9) 98 -100Y D Spring-Applied Fertilizer c Extended At least 2 years of alfalfa in a 4 or 5 24 42(12) 62 -27 7(7) 15 ▪ Rotations year rotation Grazec No pertinent information from Iowa- Pastures assume similar to CRP 85•••• 100Y Drainage No impact on concentration -11 33(32]^ 98 Water Mgmt. Shallow Tv Drainage No impact on concentration 5 32(15)^ 54 Wetlands Targeted Water Quality 11 52f 92 w Bioreactors 12 43(21) 75 m w Only for water than interacts with the Buffers active zone below the buffer.This 33 91(20) 99 would only be a small fraction of all water that makes it to a stream .. Nutrient trading is a voluntary, conceptual frato improve water quality. Primary motivation : point source regulation and cost CONSERVATION Farm reduces nutrient levels beyond requirements to gain credit - i y Nutrient Tradin r :. . Nutrient reduction '`��'*`'A` y ' I 1 ;:/ 5 W ' - _ =--, at a lower cost .,ab- f 1 r Y p k., ,„ , 3" 4 - �.� tom,-.P.,,,ii � I . 4; `� ��t� ' - tl` its :;.•:',,e- .f P' N 4 k.� ''.Kr " 9 I $$$3 Pollution source pays farmer for credit to meet regulations A physically-based modeling framework is being used to achieve the goals of this study. MIKE SHE Hydrologic Processes Mathematical/Numerical Description Rain and Snow Evapotranspiration, J f Evapotranspiration N� / $ Kristensen and Jensen AD \\%Rain&Snow / From . • 2-Layer Water Balance % �Ol Canopy interception AIL intercepted From soil and y water From root `j • Net recharge‘e.g.DAISY) se.Q water surfaces / reci nation zone Net . - precipitation Snow melt • Degree-day melting Channel Flow IMIKE 111 Snow melt --"11111611.1."- \ Overland Flow 1D St Venant Equations: Pumping and L •2D Finite Difference Diffusive Wave • Kinematic wave approx. '�` n Recharge • Dlffust.wave approx. • Semi-distributed ^ i \ < •/ • Full d namic Overland ifV • H g er-or•er y dynamic n Flow Routing: Infiltration Flow • No-routing Root zone s -t 1 l m • tdusk nguskin m--Gunge II Unsaturated flow Lakes I Channel / Unsaturated Zone Flow �V / •:ID Finite Difference: Moving water table t Flow • Richards Equation' ��) 1 i) � •vravity Flow • •2-Layer Water Balance Sewer Flow Groundwater flowIIIII4 •Net Recharge(e.g.DAISY)API. / 'MOUSE) v v / libillOP*. :r, PP"- �,� Groundwater Flow 1,„ �, •3D Finite Difference Darcy Flow] D H 12016 • Lumped,Conceptual-Linear Reservoir / 8 Catfish Creek Paleozoic `r Wisconsin Northwest Iowa Plains Plateau Catfish Creek p Des Moines Lobe Iowan Surface Missouri River East-Central Iowa Alluvial Plain Drift Plain Loess Hills Iowa-Cedar Lowland Southern Iowa Drift Plain Mississippi River Alluvial Plain The Catfish Creek MIKE SHE hydrologic model was built using publically available datasets and model parameters derived from literature . A B C C ` 1' ---2\7 * 'TI r ': tl i+ 4 f � w l • •:r J] 4,,!'s• ff-' �..tik L. J] 'ti fir` If � k SSV i. \_, r•.A, 17 •J� .:i _ 14 ,. S4 ''� SFS - i. IJ/{{� P * 4 i , • yj u _ .1010104 • .'%.*':l.4 •i ..: Y• leilggyp ` .!" k 'I -- it • Sinkhole f ndform Region Bedrock Depth(m) Soil Texture East-Central Iowa Drift Plain -0-1 2-5 I I10-15 Other _Unidentified Loam Paleozoic Plateau 1-2 I-15-10 —15-40 MI Silt loam-Siltyclay loam okilltIr' w' D F trt � tt. ' V •_ , N9 K `t R 'H y q. 2A ' 1 '4$ "F. ' x ° . 1 » p"' . 1. ra t^- fit ! -,moi *r, A �. h c� miT tib''•+ - N G Elevation (m) A Slope(%) Land Use 0 0 4 $km m 0_2 I 5-10 ,15-20 Other -Forest Agriculture 180 -2-5 10-15—>20 Grass/Pasture _Developed 10 MIKE SHE is coupled to MIKE 11 to simulate river discharges and water levels . Catfish Creek MIKE 11 Network MIKE SHE Mesh and Coupling to MIKE 11 3 m DEM MIKE SHE Topography (100 m) vtis;te /4 r � ( Ill ti �` �wI R .....,...4 �� iz 1 ./."j0, J.;*s...._, `y - 1; N 0 250 00X0 jb t <,' StreamCentenine MIKE SHE Model Domain \L�� N/ �� .( ` 1 ! n .. MIKE 11 River Branch Internal Cell y � '� I•'ti� W \� J,:'�± µ� � VTt�^VS �� N p, MIKE SHE River Link O Boundary Cell 1\ �`1( .----,....Pr i \ /( I) 111 f"� .J Z S' a __ Watershed Boundary • MIKE SHE Calculation Node j4 t �•l;. !I t" �� P'yr ,� Indundation(Flood Codes) CJ..).: ,,.�l_ J / h � 3v ir.• ` '1 /1 o 1 d o 0 0 0 o 0 0 1 fir ! ( �".,r� -, -- \ -`.f { .r 0 0 0 r 0 0 T� ‘-'\ - IS, { t \ p o 0 0 o ,0,10 5 ,, 4 . .:� . ' 11 n4�� ) —� i I V 1 o 0 0 gl-.., ti � .� f /C- 7 o 0 0 0 0 'y �.. -�0 „.7 ��� 0 0 0 0 0 0 0 0 o a o Y 'ci �. 1p �� i9 eo 0 S Z a Al , �, 0 0 0 � ` , v . ,n4 ,- iir j4i ,i 00 ,a , ° r ' 0 _ Catfish Creek MIKE SHE Model Development 100 m cells (18,655 surface nodes) 5 MIKE 11 branches 139 nodes per UZ column 63.2 stream miles 2 SZ layers (50 m vertical extent) �.t ,1., 7 N ' 4krO a In,'.. ":0-,,t6' ',1-:—a /� 1 , Ground Elevation (m) �+ A � , :F `x;+f-'"i )Sly / -,1 140 160 180 200 220 240 260 280 300 320 340 .\\v•.‘,:,..::-.., -. p\ ,r t ' i'Aj •�,: _ ,„, , , .,,,.... , R if Fhb fi , c ?*,A f ....-. .. , 1:11. A. *! o.�ai , MIKE SHE ° r .00m DEM (m) '' 58.0 X to Z ratio:12 i 12 A water balance approach is being used to calibrate the Catfish Creek hydrologic model to 2014. ,_..,JJ ,_. Ratio Target Literature/Study Values References � Run Creek ",� earMarqu Marquette,la Q/P 0.3 0.28 Schilling & Libra 2003 /- -,i 0.26-0.33 Schilling& Wolter 2005 0.31 Bradley 2014 0.26-0.35 Drake 2016 ET/P 0.7 0.73 0.80 McDonald 1961 Gaytonyj�. 0.65 Sanford and Selnick 2013 Paleo is Plateau\` ' Mississippi River 0.69 Bradley 2014 *It , Alluvial Plain 0.65-0.74 Drake 2016 Wisconsin E/ET 0.3 0.26, 0.33 Kang et al. 2003 T/ET 0.7 0.67, 0.74 Kang et al. 2003 '` 0.61±0.15 Schlesinger& Jasechko 2014 Dubuque Lock •d A. • 11 0.6 Berkelhammer et al. 2016 4)4.-- sinsinawa RivlerA Qb/Q 0.6 0.56, 0.62 Schilling& Libra 2004 --...h- ' Lt;= fs,,,,, near Menominee,IL 0.63, 0.67 Schilling & Wolter 2005 I ( - ' 4i@ i 0.71 Bradley 2014 4 - Dubuque / Illinois 0.61 StreamStats 4.0 2016 r Regional Airport 0.70-0.75 Drake 2016 Iast-C ht "low Drift lain Rain Gauge Jackson-4-.1(N thhForkMaquoketa * en ulton,IA� • USGS Discharge Gauge r- _ The simulated annual water balance for Catfish Creek is reasonable . 0.1 0 Q/P ET/P E/ET T/ET Qb/Q ■ Annual Target ■ 2014 Calibration 14 Visualization ,-' 0.0- 1 ,z Water Table Elevation (m) 0 i I cs 0.5- L..... _ Z: 160 180 200 220 240 260 280 300 320 340 - .— 1'0- cem 1.5- A 2000 _ Simulated Catfish Creek Outlet Hydrograph \' \ — 1800 � ' 1600 - ii _ iaoo — • . �� Outlet v� 1200 - / _ A 4rL -,- 4 vi. _ 4, . fv\-, v,c- 0 woo —s.- ....... ALr t ,-r 'firt U �, N 800 - ?'\ . �_ '� 600 - I f 400 - 200 - I I I I I 1 05-01 05-21 06-10 06-30 07-20 08-09 08-29 X to Z ratio: 12 2014 (month-day) Catfish Creek Instrumentation l ___, u® NOAA Rain Gauge 8 Stream Stage N 0 2 4 = IDNR STORET Site C Water Quality 1 . ikm � ,. Stream Stage and City • Water Quality — "' T msw..w,t C Asbury .. r \ 1, Dubuque Q� E / Z / li.I iNOC I l � cl ' Ot NF H0r1 .t-.. a,t D,�bw t WQ26 -x Centralia' ,I .,_�flt l „--'_I / ,, ' ' (- WQ25ICTFSHCRO1 1.: - rr I - K Wea RN C•Q� N• /7-3 ki v _ __` _ / • t •1.. V • R N — \ Y . i t,..› D�BV q\---,' POR B'0. I _..�.. .Al2 A L..,,,, + ----i�• `{'1M' - IFY \ J l _ 4 , ') , Y 1 / 1C Catfish Creek Water Quality 'C 0! 1 if , r I I 1 ' I 1 (II ' ' 1 'I 11 I 11 r " rr 1 ''— - r T -r1 '� .1 �� I II- Iv - I y 1 1 5 c 0. m c - c 1 - el 6 - WQ25: 41.1 mi2, 23% agric., 11% developed NOx-NOx-wags 5 - WQ26: 13.2 mi2, 15% agric., 52% developed • . 4 - ' ri kI ilt 15) i ;, ! I l'i I\,. :, I Z 3 - +• x ' , 1 \:t 0 i Ii111\14444 E fl .m . ! E . I Ill\ ; 1 I !i \I#0:1 1,i1"111411:: lkilkrti‘_ ; I ; i : ; , , ,:... , , , , I , . . li : it\ (I ' i •Ni\i\li r 1 - • ' • k, •1 I 11)0101.1 4 ! I:: thLii! \14 M ' '4.-___: . lki \ \\jj 'f4t\i ki\ ii 4-20-15 5-20-15 6-19-15 7-19-15 8-18-15 9-17-15 10-17-15 11-16-15 12-16-15 1-15-16 2-14-16 3-15-16 4-14-16 5-14-16 6-13-16 17 Wetland Evaluation Slough Creek c Paleozoic Northwest Iowa Plains Plateau Des Moines Lobe Iowan Surface 4,4 Missouri River East-Central Iowa Alluvial Plain Drift Plain Loess Hills • Iowa-Cedar Lowland Southern Iowa Drift Plain Mississippi River Alluvial Plain Slough Creek provides an opportunity to evaluate nitrogen removal processes in a relatively well monitored CREP wetland ; ' ,I , rF � e. rwI x . ibt ', ,_ . • s_L I(% 'Ltvii,V I�j` `i "i vy,, �1ti r ,#(0;11010*-'r a e+w> s-rn s.mu e.a+> n,eu rano xn+> xo-u ey+> wrro ,efn ,oaon> 1+a4, n.vu +r ne 100 - 2015 Monthly Average Mdcheu 90 - —Apr-Nov Average I.I . - 80 - - . 70 - 0 c 60 L_ ___I 1 - 0 u 50 - z - si.. e, Uk = 40 - W i — CREP WeUan e1 ' CREP AIUN , 30 SI. gh Creek 20 iW�2 /, 0 IDNR STORET Site • Wat:':z'; °c5 Apr May Jun Jul Aug Sep Oct Nov • Sae.m St.e.nd Water Quality 19 Following the same methodology used for Catfish Creek, a MIKE SHE hydrologic model was developed for Slough Creek that was calibrated to annual water balance ratios . Sl„ilg.,-;reek`,9 E 11 4 ver!;.et^ork A B C III ... ,..,_ , ,..........„_,.., k AIL' , . . ,,,,L_ .,..i 1.,._._ .. __; .�. l . . 4 ♦1 �r , . . ..I r 1111 El ! N♦ ♦ - _ '>s �I r J • ; r u t k - r i A 1 lli 1\ N 'IIIFill 1 oil Texture Elevation (m) n i _ I Other -Loam -Fine sandy loam N Land Use 360 Silty clay loam-Silt loam-Muck - 0 1 2 Agriculture _ Grass 7��Wetland B - _. =Clay loam — 330 km —Developed _ Forest 'I Slough Creek MIKE SHE Model Development 30 m cells (18,440 surface nodes) 5 MIKE 11 branches 79 nodes per UZ column 6.5 stream miles 2 SZ layers (10 m vertical extent) °s: 1 ril i:i i‘:.,, _, la, 4 x .... ".. MIKE SHE 30m DEM (m) Ground 359.5 Elevation(m) 358 X331 .1 356 \114, 354 - 352 - 350 - 348 R : ,;' - 346 — 344 k + 342 — 340 - 338 336 334 1 ..... - 332 330 �: 328 326 : : 324 4 322 iii ...' X to Z ratio: 12 `" The simulated annual water balance for Slough Creek is reasonable . 0.1 0 Q/P ET/P E/ET T/ET Qb/Q ■ Annual Target ■ 2014 Calibration 22 Visualization c„ i i , 1 c:.., _ 0.25 - r ,. iiir- , 11 d c�c 0.5 - _ c ~0.75 - R IX 1 - 1 Slough Creek CREP Wetlan 300- Inflow Outflow 1i)91 250 - Wetland WSE 200 - m Normal Pool Elev. En 150 - - 1091 t b 100 - - Z 71111111re. $34.4 II 334.1 FN 50 - 333 Y .a _ i 333.5 Control Structure Elev. 109C, l 333.1 332.8 332.2 X 332.2 o I ' ' ❑ 33;6 Simulated Wetland Water Level 6-21-15 6-22-15 6-23-15 6-24-15 6-25-15 X to Z ratio: 100 Water quality simulations in MIKE 11 were performed to assess nitrate removal dynamics in the Slough Creek wetland . Slough Creek MIKE 11 River Network MIKE 11 Ecolab Study Domain: WQS12 4 WQS8 r_ �. ,; Comparison -Normal Pool 1 VIOL Point: WQS8 , Impose upstream l boundary *1 t i Flow conditions from it �,--'� 1 1 / WQS12 and . MIKE 11 J / simulated Ecolab 1 /� hydrology - ° I t Stud // / \ i \ +„ Domain yl./ / / / 11 / \ 1 I ` U 1 / i I / I. / • IP% / i'A i I i /t 1111111' in" " Best" Simulated Nitrate Concentration : 2014 011,f. I II 111 . I N C d 0.5- C = - c Ir 1 - 20 - Sim. N-Load In (WQS12): 27.3 lb/ac NOx In(WQS12) Sim. N-Load Out (WQS8): 15.4 lb/ac NOx Out(WQS8) Sim. N-Load Out (k = 0.3d-1): 16.4 Ib/aC Sim: Den. rate =0.3lday 1 den p l 15 - II I {F r Simulated vs Measured E 10 i a I Inlid-Nul‘Y.A.W"\\AA,\„....,,,v i le 5 - 91 PYIyl \siveloovemi . 41i. . , ilitiii' fir ti. .. , 0 i I i I i I i I i I i I , I 1 i I i I i I i I i I i I 5-8-14 5-22-14 6-5-14 6-19-14 7-3-14 7-17-14 7-31-14 8-14-14 8-28-14 9-11-14 9-25-14 10-9-14 10-23-14 11-6-14 11-20-14 " Best" Simulated Nitrate Concentration : 2015 E 0 1 r 1' r I - r r r, IIS , �r r r i T- 1. I I II I f r I] $1,• 0.5— R - c • 1— ce Sim. N-Load In (WQS12): 13.1 lb/ac 20 — NOx In(WQS12) Sim. N-Load Out {WQS8): 3.0 Ib/ac NOx Den{ rateO $)O.slday r. Sim. N-Load Out (kden = 0.3d-1): 6.2 Ib/ac ,i }}; ti 15 - Simulated vs Measured r'r\terNI : I i---1/41n, x 10 — I . O i ' Zit! ! • r _ � � x • NI :i 1\ ,a II /If0 0 , I , I , 1 , I , 1 , I , 1 , I 1 , I , I , I , I , I 5-19-15 6-2-15 6-16-15 6-30-15 7-14-15 7-28-15 8-11-15 8-25-15 9-8-15 9-22-15 10-6-15 10-20-15 11-3-15 11-17-15 12-1-15 26 Future work centers on simulating nitrogen fate and transport for other conservation practices . Chronological Future Work Topic Description/Comments Related Order Objective 1 Improve simulated hydrology at Use radar rainfall, implement snowmelt, expand 1 seasonal and monthly time scales MIKE 11 network, review ET and subsurface characterizations 2 Develop riverine and terrestrial Necessary for evaluating nutrient reduction benefits 2 nitrogen process models in Ecolab of selected practices 3 Select agricultural conservation Wetlands 3 practices to evaluate Proposed: farm ponds, cover crops,bioreactors, saturated buffers 4 Use numerical simulations to Perform a sensitivity analysis to model parameters 3 evaluate each practice 5 Quantify watershed scale benefits Targeted placement of practices, evaluate variable 4 of different practice scenarios in agricultural management decisions and climate Catfish Creek change projections 27